Immunomodulatory action of the DNA methyltransferase inhibitor SGI-110 in epithelial ovarian cancer cells and xenografts.
نویسندگان
چکیده
We aimed to determine the effect of SGI-110 on methylation and expression of the cancer testis antigens (CTAs) NY-ESO-1 and MAGE-A in epithelial ovarian cancer (EOC) cells in vitro and in vivo and to establish the impact of SGI-110 on expression of major histocompatibility (MHC) class I and Intracellular Adhesion Molecule 1 (ICAM-1) on EOC cells, and on recognition of EOC cells by NY-ESO-1-specific CD8+ T-cells. We also tested the impact of combined SGI-110 and NY-ESO-1-specific CD8+ T-cells on tumor growth and/or murine survival in a xenograft setting. EOC cells were treated with SGI-110 in vitro at various concentrations and as tumor xenografts with 3 distinct dose schedules. Effects on global methylation (using LINE-1), NY-ESO-1 and MAGE-A methylation, mRNA, and protein expression were determined and compared to controls. SGI-110 treated EOC cells were evaluated for expression of immune-modulatory genes using flow cytometry, and were co-cultured with NY-ESO-1 specific T-cell clones to determine immune recognition. In vivo administration of SGI-110 and CD8+ T-cells was performed to determine anti-tumor effects on EOC xenografts. SGI-110 treatment induced hypomethylation and CTA gene expression in a dose dependent manner both in vitro and in vivo, at levels generally superior to azacitidine or decitabine. SGI-110 enhanced the expression of MHC I and ICAM-1, and enhanced recognition of EOC cells by NY-ESO-1-specific CD8+ T-cells. Sequential SGI-110 and antigen-specific CD8+ cell treatment restricted EOC tumor growth and enhanced survival in a xenograft setting. SGI-110 is an effective hypomethylating agent and immune modulator and, thus, an attractive candidate for combination with CTA-directed vaccines in EOC.
منابع مشابه
Epigenetic targeting of ovarian cancer stem cells.
Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer. As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, sil...
متن کاملThe novel, small-molecule DNA methylation inhibitor SGI-110 as an ovarian cancer chemosensitizer.
PURPOSE To investigate SGI-110 as a "chemosensitizer" in ovarian cancer and to assess its effects on tumor suppressor genes (TSG) and chemoresponsiveness-associated genes silenced by DNA methylation in ovarian cancer. EXPERIMENTAL DESIGN Several ovarian cancer cell lines were used for in vitro and in vivo platinum resensitization studies. Changes in DNA methylation and expression levels of TS...
متن کاملCancer Therapy: Preclinical The Novel, Small-Molecule DNA Methylation Inhibitor SGI-110 as an Ovarian Cancer Chemosensitizer
Purpose: To investigate SGI-110 as a "chemosensitizer" in ovarian cancer and to assess its effects on tumor suppressor genes (TSG) and chemoresponsiveness-associated genes silenced byDNAmethylation in ovarian cancer. Experimental Design: Several ovarian cancer cell lines were used for in vitro and in vivo platinum resensitization studies. Changes in DNAmethylation and expression levels of TSG a...
متن کاملTumor and Stem Cell Biology Epigenetic Targeting of Ovarian Cancer Stem Cells
Emerging results indicate that cancer stem–like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer. As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem–like cells. Epigenetic aberrations, especially DNA methylation, sil...
متن کاملImmunomodulatory activity of SGI-110: a basis for novel chemo-immunotherapeutic combinations in cancer treatment
Aberrant DNA hypermethylation favors tumor escape from host’s immune recognition by decreasing the expression of tumor-associated antigens (TAA) (e.g., cancer testis antigens (CTA)), HLA, co-stimulatory molecules that are all required for efficient immune recognition of cancer cells. Thus, increased levels of DNA methylation in cancer cells might contribute to reduced clinical efficacy of immun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Epigenetics
دوره 10 3 شماره
صفحات -
تاریخ انتشار 2015